SeaBAM Empirical Algorithms
Algorithm Equation(s) Band ratio (R), Coefficients (a) Reference IDL routine
Global Processing (GPs) C13 = 10^(a0+ a1*R1);
C23 = 10^(a2+ a3*R2);
[C+P] = C13;
If C13 and C23 > 1.5 ug/L then [C+P] = C23
R1 = Log(Lwn443/Lwn550);
R2 = Log(Lwn510/Lwn550);
a = [0.053, -1.705, 3.3266 , -2.440]
Evans and Gordon 1994 a_gps_p
Clark 3-band (C3b) [C+P] = 10^(a0 + a1*R) R = Log((Lwn443+Lwn520)/Lwn550);
a = [0.745, -2.252]
Muller-Karger et al. 1990;
D. Clark;
McClain and Yeh 1994
a_c3b_p
Aiken-C C_21 = EXP(a0 + a1*Ln(R));
C_23 = (R +a2)/(a3 + a4*R);
C = C_21;
If C < 2 ug/L then C = C_23
R = Lwn490/Lwn555;
a = [0.464, -1.989, -5.29, 0.719, -4.23]
Aiken et al. 1995 a_a213_c
Aiken-P C_22 = EXP(a0 + a1*Log(R));
C_24 = (R +a2)/(a3 + a4*R);
[C+P] = C_22;
If [C+P] < 2 ug/L then [C+P] = C_24
R = Lwn490/Lwn555;
a = [0.696, -2.085, -5.29, 0.592, -3.48]
Aiken et al. 1995 a_a224_p
OCTS-C C = 10^(a0 + a1*R) R = Log((Lwn520 + Lwn565)/Lwn490);
a = [-0.55006, 3.497]
Science on the GLI Mission. p. 16;
Ocean Optics XIII
a_octs_c
OCTS-P [C+P] = 10^(a0 + a1*R1 + a2*R2) R1 = Log(Lwn443/Lwn520);
R2 = Log(Lwn490/Lwn520);
a = [0.19535, -2.079, -3.497]
Ocean Optics XIII;
C. McClain pers. comm.
o_octs_p
POLDER C = 10^(a0 + a1*R + a2*R^2 + a3*R^3) R = Log(Rrs443/Rrs565);
a = [0.438, -2.114, 0.916, -0.851]
A, Bricaud pers. comm. a_pold_c
CalCOFI 2-band Linear C = 10^(a0 + a1*R) R = Log(Rrs490/Rrs555);
a = [0.444,-2.431]
Mitchell and Kahru 1998 a_cal1_c
CalCOFI 2-band Cubic C = 10^(a0 + a1*R + a2*R^2 + a3*R^3) R = Log(Rrs490/Rrs555);
a = [0.450,-2.860,0.996,-0.3674]
Mitchell and Kahru 1998 a_cal2_c
CalCOFI 3-band C = EXP(a0 +a1*R1 + a2*R2) R1 = Ln(Rrs490/Rrs555;
R2 = Ln(Rrs510/Rrs555;
a = [1.025, -1.622, -1.238]
Mitchell and Kahru 1998 a_cal3_c
CalCOFI 4-band C = EXP(a0 + a1*R1 + a2*R2 R1 = Ln(Rrs443/Rrs555);
R2 = Ln(Rrs412/Rrs510);
a = [0.753, -2.583, 1.389]
Mitchell and Kahru 1998 a_cal4_c
Morel-1 C = 10^(a0 + a1*R) R = Log(Rrs443/Rrs555);
a = [0.2492, -1.768]
Ocean Optics XIII a_mor1_c
Morel-2 C = EXP(a0 + a1*R) R = Ln(Rrs490/Rrs555);
a = [1.077835, -2.542605]
A. Morel pers. comm. a_mor2_c
Morel-3 C = 10^(a0 + a1*R + a2*R^2 +a3*R^3 R = Log(Rrs443/Rrs555);
a = [0.20766, -1.82878, 0.75885, -0.73979]
A. Morel pers. comm. a_mor3_c
Morel-4 C = 10^P(a0 + a1*R + a2*R^2 +a3*R^3) R = Ln(Rrs490/Rrs555);
a = [1.03177, -2.40134, 0.32199, -0.29107 ]
A. Morel pers. comm. a_mor4_c
Ocean Chlorophyll 2 C = 10^(a0 + a1*R + a2*R^2 + a3*R^3) +a4 R = Log(Rrs490/Rrs555);
a = [0.341, -3.001, 2.811, -2.041, -0.040]
J. O'Reilly
S. Maritorena
a_oc3_c

Notation
  • Lwn:   Normalized water-leaving radiance
  • Rrs:   Remote-sensing reflectance
  • Log:   Logarithm base 10
  • Ln:   Natural logarithm
  • EXP:   Natural exponential function
References
  • Aiken, J., G.F. Moore, C.C. Trees, S.B. Hooker, D.K. Clark, The SeaWiFS CZCS-type pigment algorithm, NASA Tech. Memo. 104566, Vol. 29, 34 pp, 1995.
  • Evans, R.H. and H.R. Gordon, Coastal zone color scanner "system calibration": A retrospective examination, J. Geophys. Res., 99, 7293-7307, 1994.
  • McClain, C.R. and E.-N. Yeh, CZCS bio-optical algorithm comparison, in Case Studies for SeaWiFS Calibration and Validation, 1, NASA Tech. Memo. 104566, Vol. 13, 3-8, 1994.
  • Mitchell, B.G. and M. Kahru, Algorithms for SeaWiFS developed with the CalCOFI data set, CalCOFI Rep. 39, 26 pp., Calif. Coop. Oceanic Fish. Invest. Rep., Calif., 1998.
  • Muller-Karger, F.E., C.R. McClain, R.N. Sambrotto, and G.C. Ray, A comparison of ship and coastal zone color scanner mapped distribution of phytoplankton in the southeastern Bering Sea, J. Geophys. Res., 95, 11,483-11,499, 1990.